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It is well known from experiments in acoustic cavitation that two bubbles pulsating in 
a liquid may attract or repel each other depending on whether they oscillate in or out 
of phase, respectively. The forces responsible for this phenomenon are called 
‘Bjerknes’ forces. When attractive forces are present the two bubbles are seen to 
accelerate towards each other and coalesce (Kornfeld & Suvorov 1944) and 
occasionally even breakup in the process. In the present study the response of two 
initially equal and spherical bubbles is examined under a step change in the hydrostatic 
pressure at infinity. A hybrid boundary-finite element method is used in order to follow 
the shape deformation and change in the potential of the two interfaces. Under the 
conditions mentioned above the two bubbles are found to attract each other always, 
with a force inversely proportional to the square of the distance between them when 
this distance is large, a result known to Bjerknes. As time increases the two bubbles 
continue accelerating towards each other and often resemble either the spherical-cap 
shapes observed by Davies & Taylor (1950)’ or the globally deformed shapes observed 
by Kornfeld & Suvorov (1944). Such shapes occur for sufficiently large or small values 
of the Bond number respectively (based on the average acceleration). It is also shown 
here that spherical-cap shapes arise through a Rayleigh-Taylor instability, whereas 
globally deformed shapes occur as a result of subharmonic resonance between the 
volume oscillations of the two bubbles and certain non-spherical harmonics (Hall & 
Seminara 1980). Eventually, in both cases the two bubbles break up due to severe 
surface deformation. 

1. Introduction 
More than a century ago C. A. Bjerknes and his son V. F. K. Bjerknes discovered a 

very interesting hydrodynamic effect, namely that pulsating bodies in fluids either 
attract each other when they oscillate in phase or repel each other when they oscillate 
out of phase. In order to explain this phenomenon they postulated that every body that 
is immersed or moving in an accelerating fluid is subject to a kinetic buoyancy equal 
to the product of the acceleration of the fluid multiplied by the mass of fluid displaced 
by the body. In the case of two interacting bubbles each one of them moves due to fluid 
acceleration caused by the oscillations of the other one. They also measured the force, 
which they found to be inversely proportional to the square of the distance between the 
bubbles (Bjerknes 1906,1909). Naturally they made the analogy with electromagnetism 
and they coined the terms ‘hydroelectricity’ and ‘hydromagnetism’. Hicks (1879, 
1880) independently obtained an analytical expression for the force between pulsating 
spheres using the method of images in an effort to explain gravitation. Pearson (1884) 
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also derived independently an analytical expression of this force and tried to explain 
magnetism based on the mutual attraction or repulsion due to pulsation. 

More recently the problem of bubble-bubble interaction has been addressed again, 
but now in the context of gasliquid separation in bubbly fluids and in cavitation 
observed in high-speed flows. In particular, Kornfeld & Suvorov (1944) in their study 
of cavitation observed that pressure variations induced bubble formation close to solid 
surfaces followed by radial vibration of the bubbles. Very frequently two bubbles were 
seen to approach each other with constantly increasing velocity and coalesce to form 
larger bubbles. In other cases, they were seen to repel each other or, when their sizes 
differed significantly, the smaller one began to revolve around the larger one in a 
circular or elliptical orbit. For large pressure variations and after reaching a certain size 
the bubbles were observed to deform significantly, break up and collide with the solid 
surfaces at a great speed after following a zig-zag trajectory. These are often referred 
to as ‘dancing bubbles’. The present study offers quantitative arguments for the onset 
of instabilities that lead to bubble breakup and in Part 2 of this study (Pelekasis & 
Tsamopoulos 1993) it is shown how bubble interaction can affect or even instigate the 
zig-zag motion. 

It is also well known that a standard pressure wave can be used for trapping bubbles 
in a liquid (Blake 1949). Eller (1967) observed that bubbles smaller than the resonant 
size have a stable equilibrium position close to pressure maxima (antinodes). Once two 
bubbles reach this area and approach each other they suddenly accelerate towards each 
other and coalesce, forming a larger bubble. This process continues until the bubble 
exceeds the resonant size in which case it is driven away from the antinode, often 
leaving smaller bubbles behind it. Bubbles larger than the resonant size migrate 
towards pressure minima (nodes) where they form larger bubbles through coalescence. 
However, there appears to be an upper limit beyond which bubbles cannot grow (Blake 
1949). Blake attributes this to the same effect that caused bubble breakup in the 
experiments conducted by Kornfeld & Suvorov, i.e. the domination of inertia forces 
over surface tension. 

The localization of bubbles at the ‘nodes’ of a pressure wave occurs when the 
Bjerknes force on them balances the usual buoyancy force caused by gravity. This type 
of Bjerknes force is due to the acceleration of fluid induced by the externally imposed 
pressure gradient. This is the primary effect. The force responsible for attraction or 
repulsion between pulsating bubbles is much weaker since it is a secondary effect. More 
specifically, a small variation in the acoustic pressure induces pulsations to each one of 
the bubbles which then radiates a pressure wave towards the other one. This secondary 
sound field causes the two bubbles to accelerate. Based on this reasoning, Crum (1974) 
used a stationary pressure wave in the vertical direction to trap the bubbles and induce 
volume oscillations. Then he measured their relative velocity of approach in the 
horizontal direction. The secondary Bjerknes force between two bubbles is much 
smaller than the primary one. In particular, using a linearized potential flow model he 
found the secondary force between two spherical bubbles of equal size, at a distance 
of four radii apart and oscillating with a frequency 377 Hz, to be less than half the force 
due to the primary acoustic field. However, the secondary force increases with 
increasing frequency of the pulsations and ultrasonic pressure variations in a liquid 
may be used to clear it from gas bubbles; see Batchelor (1967). 

The goal here is to obtain a quantitative and detailed description of the dynamics of 
some of the phenomena presented above. In particular, the mechanism leading to 
coalescence will be explained, the instabilities during deformation and prior to breakup 
will be identified, and finally the relevant time and space scales for the evolution of the 
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effects mentioned above will be obtained. To this end, the response of two initially 
spherical bubbles, immersed in an inviscid and incompressible liquid, will be examined. 
The bubbles will be subject to a step change in pressure at infinity. Shape deviations 
from sphericity will be allowed and no u priori assumptions on the velocity potential 
will be made, in contrast to Oguz & Prosperetti (1990). Since the far-field pressure 
remains constant in time its frequency is zero and both bubbles are driven below their 
resonance-frequency. Consequently, they will always attract each other irrespective of 
their relative size, in the absence of any initial velocity field. The effect of an oscillatory 
pressure variation at infinity and the subsequent repulsion or attraction between two 
bubbles depending on their relative size is discussed in the second part of this study. 

The assumption of potential flow is justified in this problem since Re B- 1 for water 
and most common fluids, and for relatively large bubbles of radius of the order of 
1 mm or larger. Consequently, results will be valid in a timescale t < Rei which is the 
time needed for vorticity to diffuse from the two interfaces and through the boundary 
layers to the main body of the fluid. As the two bubbles approach each other the 
distance between them becomes the relevant characteristic lengthscale. As a result, Re 
decreases significantly and viscous forces soon become important for a short period of 
time before coalescence. It should also be noted that for a boundary layer on a free 
surface the flow may separate only when the curvature of the free surface becomes very 
large. Hence, formation of standing eddies close to the two interfaces is unlikely to 
happen and the flow can be safely assumed to be irrotational in the entire domain of 
the liquid. Finally, a measure of the relative importance of buoyancy and surface 
tension is given by the gravitational Bond number, Bo = (gR*2p)/cr, where g here is the 
gravitational acceleration, R* is the bubble radius, p the density of the fluid and CT is 
the surface tension. For gas bubbles with radius of the order of 1 mm, surrounded by 
water at 20 "C, the gravitational Bo, is roughly 0.13. Hence gravity can be neglected. 

As will become evident in the following sections, the motion of the two bubbles 
exhibits significantly different features as time or nonlinearities increase. As a result, 
the linear problem and the initial stages of the motion can be studied more 
conveniently and accurately using bispherical coordinates in an Eulerian framework. 
Thus, the two interfaces are uniquely described, at least in the early stages of motion. 
However, as the two centres of mass move with an increasing velocity, the description 
of the interfaces becomes inaccurate or even impossible in the original coordinate 
system, since single-valuedness may be lost. Hence, a Lagrangian representation is used 
for the description of highly deformed shapes obtained before coalescence. 

In $82.1 and 2.2 the Eulerian and mixed Eulerian-Lagrangian representation of the 
motion is given, and the canonical variables of the Hamiltonian formulation are 
introduced as explained in Pelekasis, Tsamopoulos & Manolis (1991, referred to as 
PTM 1). In the mixed Eulerian-Lagrangian representation, the position of the free 
surfaces and the velocity potential on them are updated following Lagrangian 
particles; whereas Laplace's equation is used to relate the potential flux to the potential 
on the two interfaces. In $2.3 an integral formulation is presented using Green's 
theorem. This leads to an integral equation of the first kind. In the absence of viscosity 
the motion is conservative. Formulae for the energy of the system along with other 
conserved quantities are given in $2.4 and are used frequently as accuracy tests of the 
calculations. 

In $ 3  the numerical method of solution is briefly outlined. More details are given 
in Pelekasis, Tsamopoulos & Manolis (1992, referred to as PTM2). It involves 
hybridization of the boundary element method, used for the discretization of the 
integral equation, and the finite element method, used for the kinematic and dynamic 
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boundary conditions. With the Lagrangian representation the collocation method is 
used for the discretization of the kinematic and dynamic conditions. It is shown that 
both the Eulerian and the mixed Eulerian-Lagrangian schemes fail at about the same 
point in time. Upon exhaustive numerical simulations it is found that this is not a 
numerical artifact, but it is caused by a physical instability. 

Next, the linear problem is solved in $4 for equal and unequal bubbles. The 
eigenfrequencies and eigenfunctions are found by direct eigenvalue calculations. Then 
the non-homogeneous problem is solved with a forcing term due to a step change in 
pressure at infinity. Solving the linear problem became necessary not only for checking 
the rest of the numerical results and reporting the eigenvalues of this problem for the 
first time, but also for identifying the relevant timescales of the motion and explaining 
and classifying the nonlinear results. To this end, the Eulerian formulation is the most 
suitable one, along with bispherical coordinates, since in the linear limit the two 
bubbles are nearly spherical and this is the only known coordinate system in which two 
neighbouring spheres can be coordinate surfaces. 

In $ 5  the full nonlinear problem is studied, the asymptotic results obtained by 
previous investigators are recovered and the motion of two equal bubbles is monitored 
until computations fail at a finite time due to formation of regions of very high 
curvature. Two different types of shape are observed depending on the Bond number 
based on the average acceleration of each bubble, (<g*) R*'p)/cr. When the Bond 
number is below a critical range shapes that are deformed throughout the interface 
appear as a result of subharmonic resonance (Hall & Seminara 1980). Such shapes were 
first reported by Kornfeld & Suvorov (1944). Beyond this critical range a 
Rayleigh-Taylor type of instability occurs that gives rise to spherical-cap shapes. This 
characterization is given in analogy with the shapes observed experimentally by Davies 
& Taylor (1950) in rising bubbles. The effect of pressure on the dynamic behaviour of 
the system is studied in 56 and it is seen that increasing the static pressure results in 
increased values of the critical Bond number. Finally, conclusions are drawn in $7. 

2. Problem formulation 
Nonlinear interactions between two gas bubbles surrounded by an inviscid and 

incompressible fluid are studied. The flow is irrotational and, for simplicity, 
axisymmetry around the axis connecting the centres of mass of the two bubbles is 
assumed. The density of the gas inside the bubbles is assumed to be much smaller than 
that of the liquid p, so that the gas is considered to be inertialess. Therefore, its pressure 
varies only with time according to a polytropic law. 

Both bubbles are initially spherical in shape with dimensional radii R: and R,* and 
distance D* between the two centres. The radius R: of the bubble on the left is assigned 
as the characteristic length of the system. Thus the two dimerlsionless bubble radii and 
their distance are R, = 1, R, = R,*/R: = R and D, respectively. For convenience the 
bubble on the left is assumed to be the larger one of the two, i.e. R < 1, and also 
D > 1 + R. Since the only means of distinguishing between the two bubbles is their 
initial radius, solutions when R =r 1 can be readily obtained from solutions given here. 
The surface tension, cr, between the two gas/liquid interfaces is used for making 
pressure dimensionless, P = P*/(2a/R:). The initial hydrostatic pressure in the liquid, 
P,, is used as a pressure datum and can also be thought of as a Weber number 
measuring the relative importance of inertia and surface tension forces. In the absence 
of a characteristic velocity, surface tension may be used to make the velocity potential 
and time dimensionless, @ = @*/(aR:/p)f, t = t*/@RT3/cr)i. The physical problems to 
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D = z, + zz pp=o 
FIGURE 1. Schematic of the representation of the two bubbles in bispherical coordinates. 

be solved in both this and the companion paper (Part 2) will be formulated here in the 
interest of space, and only the important differences will be mentioned in each case 
specifically. Here, the motion in the fluid is induced by a step change in pressure at 
infinity. This condition requires that for time greater than zero the pressure at infinity 
is given by 

where E is a measure of the disturbance. Besides this change, the two interfaces remain 
initially spherical and no initial velocity is imparted to the system, which guarantees 
irrotationality of the motion. 

P, = p,( 1 + E) ,  (2.1) 

2.1. Eulerian formulation 
In order to represent (at least initially) both free surfaces as single-valued functions 
using one coordinate system, bispherical coordinates are used. The equations solved on 
each interface are similar to those used in the case of an oscillating shell surrounding 
a compressible bubble (see PTM1). They are adapted here for the different geometry 
and coordinate system. A schematic of the two bubbles at t = 0 is given in figure 1. C, 
and C, are the centres of the two spherical bubbles, 0 is the origin of the bispherical 
coordinate system and 0, and 0, are its two poles. C,O = z,  < 0 and C,O = z ,  > 0 
are the coordinates of C, and C, with respect to 0, whereas the distance of each 
coordinate pole from 0 is a. The origin and the poles are chosen in such a way that 
the two bubbles are coordinate surfaces of the coordinate system at t = 0. Each point 
in space is now described via the bispherical coordinates (u, 7, $), where $ is the same 
polar angle used in spherical and cylindrical coordinates, whereas y and 7 are related 
to the Cartesian coordinates (x, y, z) as 

(2.2) 
a sinh y a sin 7 cos q5 ct sin 7 sin q5 

= coshp-cos7' Z =  X =  coshp -COS 7' C O S ~ ~  - cos 7 ' 

In this coordinate system 0 < 7 < R ,  - a0 < p < co, and the segment of the z-axis with 
IzI < a is represented by 7 = R whereas the remaining z-axis, IzI > a, is represented by 
7 = 0. In general y will be a function of 7 on each free surface; y = fi(y, t )  on the left 
bubble, whereas p =fi(7, t )  on the right bubble. However, at t = 0 each surface is 
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spherical and p becomes a constant; p = pl, p2 on the left and right bubble respectively. 
For more details see Morse & Feshbach (1953); pi, a and z, are given as functions of 
D and R in Pelekasis (1991). 

Since only axisymmetric disturbances are considered, calculation of the bounding 
surfaces reduces to calculation of the generating curves of the two bubbles. Further, on 
applying Green's theorem to Laplace's equation, an integral equation relating the 
potential to the flux on the boundary is obtained. This procedure is described in g2.3. 
Schematically the resulting relationship can be written as 

where !Pt, a@/agi (i = 1,2) are respectively the values of the potential and the flux 
normal to the interface, for the two bubbles. They are defined as: 

(2.4) 

- V@.N,,  i = 1,2, (2.5) 

yi = @(p =h(q, t) ,  7, t) ,  i = 132, 
a@ 
act 

_ -  

with N,(i = 1,2) being the outward-pointing normal vectors with respect to the liquid; 
i.e. they point towards the interior of the two bubbles. In bispherical coordinates 

where q as a subscript denotes partial differentiation and ep, e,, are the unit vectors in 
bispherical coordinates. Since the kinematic and dynamic boundary conditions are also 
written on the boundary, the formulation may be recast in terms of the surface 
quantities,f,, Y,, a@/a&(i = 1,2) that depend only on time and one spatial coordinate, 
namely 7. This makes the one-dimensional nature of this problem apparent and 
facilitates numerical differentiation. 

Proceeding along the same lines as in PTMl, the above surface variables are 
introduced in the kinematic and dynamic boundary conditions, which now read as 

where &,(i = 1,2) denote the pressures inside the two bubbles, h is the same metric 
along both p- and q-directions and x(i = 1,2) are the mean curvatures on the two 
interfaces defined as 

- 2 q  E V.(--N,) 

For the airlwater system the rate of change of the internal energy of each bubble is 
larger than the rate of heat transfer to/from the liquid. Thus, if uniform conditions 
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exist inside each bubble the pressure varies adiabatically with the instantaneous volume 
(Plesset & Hsieh 1960). Thus, 

(2.10) 

where y is the polytropic constant, 1 d y d 1.4, and q denotes the dimensionless 
volume of each bubble; for an adiabatic process y = 1.4. Expressions for the metric h 
and the volume in bispherical coordinates are given in Pelekasis (1991). Owing to 
axis ymmetry , ah a p  a2G _ -  6 -  ----=O at ~ = 0 , n .  

a ~ a C i  
(2.1 1) 

It should also be noted that the shape of the free surfaces and the velocity potential 
evaluated on them were shown by Miles (1977) and Zakharov (1968) to be the 
canonical variables of the Hamiltonian formulation for gravity water waves. Hence, 
there is every indication that they are the most appropriate variables for the description 
of the motion in this problem as well. More recently Benjamin (1987) used the same 
approach in deriving the Hamiltonian theory and integral invariants for the motion of 
bubbles in an infinite liquid. 

2.2. Mixed Eulerian-Lagrangian formulation 
During the last stages of motion and shortly before coalescence, both interfaces are 
expected to deform severely. In order to capture such behaviour it is advantageous to 
follow Lagrangian particles as they move in time. As a result of axisymmetry only one 
parameter is needed to label different particles. The arclength, s, along each interface 
would be a possible choice but its value on each particle varies with time. This makes 
it inconvenient to use in numerical integration and differentiation. Hence, particles are 
labelled using a parameter 6 that varies from 1 to N on each one of the N particles (see 
also Longuet-Higgins & Cokelet 1976). The relationship between the arclength s and 

is given below. Two local spherical coordinate systems are used for the description 
of the two free surfaces. Initially, the origin of each of them coincides with the centre 
of each of the bubbles. 

The arrangement mentioned above is used for updating the shape and potential of 
the two interfaces. This is advantageous for the description of the motion, especially 
for discretization of the kinematic and dynamic boundary conditions when the initial 
distance between the two bubbles is large, because it prohibits the generation of large 
numbers. For the integral equation, which is used to calculate solutions to Laplace’s 
equation, another spherical coordinate system is employed. It is common to both 
bubbles and is convenient for integration along the two free surfaces even when they 
are far apart. Its origin lies in the middle of the line segment joining the nearest surfaces 
of the two bubbles, along the axis of symmetry z, at t = 0. This system does not have 
to be relocated, irrespective of the relative position of the two bubbles, and from now 
on it will be referred to as the global spherical coordinate system. 

This formulation uses ideas from both the Eulerian and Lagrangian approaches for 
describing the motion. In particular, the kinematic and dynamic boundary conditions 
are expressed in terms of the rates of change of the potential and the coordinates, 
following a fixed particle. However, in order for the velocity to be determined on the 
interfaces the normal derivative of the potential is also needed. The relationship 
between the potential and its normal derivative on the boundary is provided by 
the integral form of Laplace’s equation. Hence, the method is called mixed 
Eulerian-Lagrangian (see also Longuet-Higgins & Cokelet 1976). 

16 FLM 254 
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Local spherical 
coordinate 1‘ systems 

Liquid @ =  0 

Global Spherical # =  x 
coordinate system Y D = zg + z, = 2c + 1 + R 

FIGURE 2. Schematic of the representation of each individual bubble in a local spherical coordinate 
system, as well as the representation of the entire system in a global spherical coordinate system. 

The schematic in figure 2 shows again the two bubbles and the location of the 
coordinate systems at t = 0. Q is the origin of the global coordinate system whereas 
C, and C, are the origins of the two local coordinate systems. C, Q = z,  < 0 and 
C, Q = zg > 0 are the coordinates of C, and C, with respect to Q along the axis of 
symmetry. A point @, w, $) in the global coordinate system can be represented in terms 
of the coordinates (r,,  8,, q5) of the local coordinate system based on the left bubble as 

(2.12) p = [(z3 + rl cos + r; sin2 OJ;, 

w = tan-,( rl sin 8, ) 
z3 + rl cos 8, ’ (2.13) 

and similarly for (r2,8,,q5). The components (vp,u,) of any vector in the global 
coordinate system are given, in terms of its decomposition (or, ue) in either one of the 
two local coordinate systems, in Pelekasis (1991). 

The kinematic condition on the two interfaces equates the velocity of every point on 
the surface with that of the fluid particle residing there, namely 

u = V@, (2.14) 

-- Dq - us, i =  1,2, 
Dt (2.15) 

where u is the fluid velocity, @ is the velocity potential and Us and 4 denote the 
particle velocity and position on the two interfaces. 

The evolution of the velocity potential of a fluid particle on the two free surfaces is 
given by combining Bernoulli’s equation with the normal force balance, 

D!Pt/Dt = $IU,lz+22p,-22p,,-2~, i = 1,2. (2.16) 

Variables appearing in the above equation bear the significance ascribed to them in 
$2.1. Decomposing the velocity in the local coordinate systems and expressing the 
components in terms of the velocity potential yields 

(2.17) 
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(2.18) 

where t as a subscript denotes partial differentiation. Expressions for the curvature and 
normal on each surface in the local coordinate systems are given in Pelekasis (1991). 

It may be shown that the local coordinate, 6, is related to the arclength along the 

(2.20) 
Owing to axisymmetry the derivatives with respect to E should satisfy the following 
conditions : 

ar. a y .  a w  a v i  
a t  a t  -=- a t z  
i=1- - 0  and - = 0  at g = O , N ,  i=1 ,2 .  (2.21) 

The last condition uniquely defines the interpolating function O(0, to be represented 
in terms of the B-cubic splines which are introduced later. It is used in view of the 
equivalent condition, a2s/i3Oa = 0, which is satisfied in the Eulerian formulation. 

2.3. Formulation of the integral equation 
Applying Green’s third identity to Laplace’s equation results in an integral equation 
for the potential at a field point anywhere in the domain in terms of boundary values 
of the potential and its normal derivative. Allowing the field point to approach either 
of the two boundaries results in an integral equation which relates the potential on the 
two interfaces to its flux there, see PTMl for details. Then, the integral equation takes 

a@ (x, t )  d(x ,  x’) dA(x, t),  (2.22) a 6  the form J* ag :@(x’, t )  + @(x, t )  - (x, x’) dA(x, t )  = JA ac 
where A is the surface area of both bubbles, (? is the three-dimensional free-space 
singular solution of Laplace’s equation subject to a point force at the source point X, 

and 5 increases along the normal to the boundary and outwards with respect to the 
domain, i.e. towards the interior of the bubbles. For an oscillating body the velocity 
potential and its normal derivative vanish at infinity like l / r  and l/r2 respectively, r 
being the distance between the field point and some reference point. Thus the part of 
the two surface integrals in (2.22) taken at infinity equals zero. The integral on the left- 
hand side of (2.22) is understood in the Cauchy principal value sense. The singularity 
in this integral is integrated by a procedure similar to the one described in PTM1. 
Intermediate steps in evaluating surface integrals on each bubble are given in Pelekasis 
(1991). 

Finally, for an axisymmetric problem the polar coordinate 4’ of the field point may 
be set to zero. Integration along the polar coordinate, 4, of the source point yields 

where Q denotes the integration interval and 

(2.24) 

16-2 
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In the Eulerian formulation bispherical coordinates are used, hence 
4 = 7, d = ?Ir, P =  p, p’ = p‘, 

(2.25) 

with p = fl(v, t )  i f j  = 1 and p =fz(7, t )  i f j  = 2 .  When e E (1/4n)(1/~x-xr~) is written 
in bispherical coordinates, the two integrals in (2.24) can be written in terms of elliptic 
integrals (Pelekasis 1991). 

In the mixed Eulerian-Lagrangian formulations the integrands appearing in (2.23) 
are expressed in the global spherical coordinates @, w, 4). Therefore, 

q = w, q‘=  w’, p =  p,  p’ = p ‘ ,  h, = h, = @‘+pi); ,  h, =psinw, (2.26) 
with j = 1 and j = 2 at the left and right bubbles, respectively. When spherical 
coordinates are used the two kernels can again be written in terms of elliptic integrals 
(PTM 1). 

2.4. Invariants of the motion 
In the absence of viscosity the system is conservative and therefore its total energy 
remains invariant with time. It consists of the kinetic and surface energy as well as the 
energy that the fluid exchanges with the two bubbles through their volume oscillations. 
Thus, 

d(A, + A,)  + V, (2p, +%) + V, (zp, +%). 
A,+-% 

(2.27) 
s a@ E = @--(A,  +A,) + 

A,+-% ac 

When the two bubbles have the same radius initially, i.e. R = 1, the plane 
perpendicular to the z-axis and at the midpoint of the line segment joining their centres 
is also a plane of symmetry. This midpoint is the centre of mass of the two bubbles and, 
owing to symmetry, remains so forever. The centres of mass of the two individual 
bubbles are given as 

When the two radii are unequal the combined centre of mass, Z ,  varies with time. 
Another quantity that varies with time, but can also be used as a check of the 

accuracy of numerical results, is the sum of the volumes of the two bubbles. In 
particular, it may be readily shown that the total volume change of both bubbles equals 
the sum of the integrals of the normal velocity at both interfaces: 

(2.29) 

3. Numerical implementation 
In its final form the problem is mixed elliptic-parabolic. In the Eulerian formulation 

equations (2.7), (2.8), (2.10) and (2.23) are solved; whereas in the mixed formulation 
the corresponding equations are (2.10), (2.17), (2.18), (2.19) and (2.23). In both cases 
the unknowns are the shapes of both bubbles as well as the velocity potential and 
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normal flux at the two interfaces along with the gas pressure. The main difference 
is that in the mixed formulation a separate evolution equation is needed for each of 
the coordinates describing the location of the free surfaces. A brief account of the 
numerical method used for each formulation is given below. The interested reader is 
referred to PTMI, PTM2 and Pelekasis (1991) for more details. 

3.1. Integration in time 
As explained in PTM2, the fourth-order explicit Runge-Kutta method was found to 
be more efficient than the other time-integration schemes tested, at least for the types 
of problems dealt with here. This is determined by the high accuracy needed, especially 
towards the late stages of motion, where, as will be seen shortly, the relevant timescale 
decreases significantly. As a consequence, the time step often has to be decreased as 
integration in time proceeds. In this study, no systematic way of time step adaptation 
is used. Instead, the time step is halved and time integration is continued without 
changing the number of nodal points, whenever a significant loss of accuracy is 
observed. Subsequently, calculations are repeated with a finer mesh and an even 
smaller time step and the results are compared. 

The use of an explicit scheme favours sequential solution for the unknowns. More 
specifically, the kinematic and dynamic boundary conditions are used in order to 
update the shape and potential of the two interfaces and then the integral equation and 
the adiabatic law are used to calculate new values of the flux at the two interfaces and 
the gas pressures inside the two bubbles. Consequently, when (2.23) is solved for the 
flux, given the potential, an integral equation of the first kind is solved. As shown in 
PTM2 this integral formulation compares favourably with the one leading to an 
integral equation of the second kind in terms of growth of short waves, since it allows 
accurate integration for longer time. 

3.2. Integration in space 
For the representation of the dependent variables the B-cubic splines are preferable as 
described in PTM2. In constructing discretized forms of the governing equations a 
slightly different approach is followed for the two formulations. 

First, in the Eulerian formulation the Galerkin finite element method is used for the 
discretization of the kinematic and dynamic boundary conditions. Integration by parts 
eliminates second-order derivatives from the mean curvature term and introduces 
boundary terms which are set to zero by applying conditions (2.1 1). Integrals involved 
in the finite element formulation are evaluated using four Gauss points per element. 
Thus the numerical error is controlled by the interpolation of the derivatives of the 
unknown functions and it is 0(h3), where h is the maximum element length. However, 
for large times higher modes become equally important and the rate of convergence 
deteriorates. The integral equation (2.23) is discretized using the boundary element 
methodology, whereby the field point is allowed to coincide with each one of the 
boundary nodes and the two interfaces are split into elements defined by the same 
nodes. The procedure for evaluating the various kernels is similar to that given in 
PTM1. The specific form of the kernels is given in Pelekasis (1991). 

Second, in the mixed representation the unknown variables are taken to be functions 
of the parameter ranging from 1 to N,  where N is the number of surface particles. 
When the mean curvature is expressed as a function of [ (see Pelekasis 1991) second- 
order derivatives with respect to ( cannot be eliminated using integration by parts. 
Therefore, the Galerkin finite element formalism does not offer any significant 
advantage. As a simpler alternative collocation is used for the construction of the 



478 N. A.  Pelekasis and J. A .  TsamopouIos 

discretized equations. Equations (2.17), (2.18) and (2.19) are evaluated at the nodal 
points using the same B-spline representation as in the Eulerian formulation. However, 
second-order derivatives of the shape have to be interpolated and this lowers the 
accuracy of the scheme to O(h2). Nevertheless this is true only at the initial stages of 
motion. Later on and as higher modes become more important the two formulations 
become equally accurate. Furthermore, as the free surfaces become significantly 
distorted, the mixed formulation is the only one that can capture the motion. 
Consequently, for maximum numerical efficiency and accuracy the Eulerian for- 
mulation should be used initially followed by the mixed formulation towards the last 
stages. Numerical simulations were conducted with both formulations, but most 
nonlinear results presented in both parts of this study have been obtained using the 
mixed formulation, whereas for the linear problem the Eulerian formulation has to be 
used. 

The integral equation is again treated using the boundary element methodology. 
Kernels and the rest of the terms appearing in the integrand are now expressed in the 
global coordinate system, see figure 2. The actual expressions in spherical coordinates 
are given in PTMl and PTM2. Owing to the acceleration of their centres of mass, the 
two bubbles may approach or even cross the origin of their respective local coordinate 
system. Then, in the region around one of the two poles very small values of the radial 
coordinate are generated, which decreases the accuracy of calculations. In order to 
remedy this, the origin of the local coordinate systems has to be relocated. For 
convenience, it is moved to the instantaneous centre of mass of each bubble, see 
Pelekasis (1991). 

3.3. Numerical accuracy and stability 
Next, the two formulations are carefully examined and compared. For this reason, the 
evolution of the shapes of both bubbles is calculated for a relatively severe initial 
disturbance and under conditions that favour rapid deformation. In particular, the 
ratio of the two radii is set to 1 and the dimensionless distance is set to 2.5. For these 
values of R and D the two bubbles are located quite close to each other initially. In 
addition the dimensionless static pressure P, is 666.66. This value is obtained for air 
bubbles with radius of the order of 1 mm surrounded by water with far-field pressure 
1.0 atm. A radius of 1 mm is assumed, since it has been reported by Kornfeld & 
Suvorov (1944) as a typical bubble size in their cavitation experiments. A step change 
in the far-field pressure is applied as initial disturbance with e = 0.3, equation (2.1). 

The step change in pressure induces volume oscillations in both bubbles. For infinite 
initial separation the period of radial oscillation for each bubble is given in 
dimensionless form as 

which for the given set of parameters and polytropic constant, y = 1.4, gives 
&, oo = 0.084. As will be seen in $4 this value does not change significantly, if the two 
bubbles are closer at t = 0, i.e. if D is initially smaller. Choosing the time step to be 
0.0005 requires roughly 170 time steps per period. As a compromise between numerical 
accuracy and computational cost, 41 points per surface are used. Since the two bubbles 
are equal in size the plane normal to the z-axis at 0 is a plane of symmetry and the two 
free surfaces evolve in exactly the same way. 

Using the Eulerian scheme the motion is followed until at t = 0.47 computations fail. 
The total energy increases exponentially fast and the bubble shapes are no longer 
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FIGURE 3. Deformed bubble shapes near coalescence with R = 1 ,  D = 2.5, E = 0.3 and P, = 666.66, 
at (a) t = 0.34, (b) t = 0.38, (c) t = 0.42 and (d )  t = 0.48; 41 particles are used per surface with the 
mixed scheme and At = 0.0005; (e) t = 0.47 with the Eulerian scheme. The above parameter values 
result in an initial average acceleration of <g> = 7.2. 

smooth. Increasing the number of nodal points to 81 and decreasing the time step to 
At = 0.000 125 does not change the results significantly. Using the mixed formulation, 
and following 41 particles per surface, computations fail a little later at t = 0.49; 
compare figure 3 (a-d) to figure 3 (e). Energy is now conserved up to the fourth digit 
until t = 0.49 at which point it starts growing exponentially fast. Increasing the number 
of Lagrangian particles to 81 requires a decrease in the time step to 0.000 125 for 
numerical stability. Again, shapes that are only deformed on the side facing away from 
the direction of acceleration arise, though they are much smoother now. These shapes 
will be called spherical-cap shapes. Agreement with results obtained using 41 points is 
at worst up to two significant digits; this happens near the poles of the bubbles and at 
t = 0.49. 

Therefore, although calculations with the mixed formulation proceed slightly further 
in time, when they fail the results are similar to those obtained with the Eulerian 
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scheme. In fact in both schemes all the spherical harmonic modes start growing 
significantly towards the end of computations but at no point do the higher modes 
become dominant, The Fourier-Legendre modes of the shape are defined with 
respect to the instantaneous centre of mass of each bubble; Pelekasis (1991). Hence, a 
short-wave instability of the type found in PTMl and PTM2 has to be ruled out. The 
fact that the minimum distance between the two bubbles has become comparable with 
the average element size can account for some loss of accuracy, but not to this extent. 
It certainly cannot explain the very pronounced irregularities at the sides of the two 
interfaces which are opposite to the direction of acceleration. It should also be noted 
that no significant concentration of nodes, due to the motion of surface particles, was 
observed. This is in contrast to studies of gravity water waves where the particles 
tended to segregate and create regions of high and low resolution. Even when we 
increased the number of nodes in regions of high curvature calculations failed at about 
the same time. Given the above observations, and others stated in Pelekasis (1991), we 
conclude that this failure of both numerical schemes is not a numerical artifact. It is 
due to the Rayleigh-Taylor instability which deforms the accelerating bubble surfaces 
so severely and abruptly that they cannot be accurately calculated. It will be further 
demonstrated in $5 that this instability occurs when enough time has elapsed for 
inertial forces to dominate surface tension forces and give rise to spherical-cap shapes. 
A similar effect was reported by Harper, Grube & Chang (1972) in their study of the 
deformation of an accelerating droplet. 

As a measure of the computational cost of the simulations, when 41 particles are 
followed per free surface, roughly 60 CPU seconds are needed per time step on an IBM 
3084 and 15 CPU seconds on an IBM 3090. About 90% of this time is consumed in 
setting up the system matrix and the remaining 10 % in factorizing it. As explained in 
PTMl, by doubling the number of nodal points computation time is a little more than 
tripled. 

4. Normal mode analysis and linear oscillations of equal and unequal 
bubbles 
When the initial disturbance in the far-field pressure becomes negligibly small in 
comparison to the static pressure, P,, i.e. e + 0, the motion becomes almost inertialess 
for a significant period of time. Then, the Eulerian representation of the governing 
equations takes the linearized form 

v26=0, - m < p < w ,  0<7<7t, (4.1) 

1 -  _ -  - (- l)r - [2& coshpu, +AT( - 2 sin7 +cot 7 coshpu, -cot 7 cos q) a 5  
at 01 

+Av,(coshp6-cos~)]-2P,,+2P,, ,u =pi, 0 < 7 < 7c, i = 1,2, (4.3) 

6+0, 7+0, p+o, (4.5) 
where overbars denote linearized quantities. Pm is zero for normal mode analysis and 
non-zero when linear oscillations are studied. The exact expressions for 4, and &, in 
terms of 6, p1 and A, pz respectively are given in Pelekasis (1991). 
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The solution of Laplace’s equation in bispherical coordinates may be expressed in 
terms of a linear combination of Legendre polynomials in 7, multiplied by exponential 
functions of p. However, in the present case, owing to the complexity of the boundary 
conditions the eigenfunctions are not given in terms of a single or even a finite number 
of Legendre polynomials. Rather, an infinite series of Legendre polynomials has to be 
used. Following Morse & Feshbach (1953) a solution for the potential of the following 
form is assumed: 

where w is the eigenvalue, and the eigenfunction X is defined above by the infinite 
summation. The term in the square root is just a scaling pertinent only to the 
bispherical coordinates. Equation (4.6) satisfies exactly Laplace’s equation and the 
boundary conditions given by (4.4) and (4.5). Differentiating (4.3) with respect to time 
and substituting for the time derivatives off7 andx from the kinematic condition, (4.2), 
yields the differential eigenvalue equation for o and X in the form of a harmonic 
oscillator. This equation is too lengthy to be reproduced here, but is given in Pelekasis 
(1991). Upon appropriate truncation of the infinite series and application of the 
orthogonality condition, a generalized eigenvalue problem is obtained, see Pelekasis 
(1991). It is solved numerically, for successively larger values of N(the number of terms 
retained in the series), until the lower eigenvalues have converged. This procedure is 
very commonly used with very accurate results (see, for example, Harper et al. 1972). 
In order to test the accuracy of the eigenvalue calculations the eigenfrequencies of each 
bubble at infinite distance from each other, i.e. D +. 00, are recovered. In this limit the 
two bubbles cease to affect each other and each one oscillates independently of the 
other. The eigenfrequencies are given by the well-known formula (Lamb 1932) 

where R, = 1 and R, < 1 for the left and right bubbles respectively. In general, the 
lower eigenmodes can be captured more accurately. 

As the distance D increases, pl,,uz increase also and consequently computations 
involve larger arithmetic values. Thus, fewer eigenmodes can be accurately captured 
since higher modes involve larger contributions from higher Legendre polynomials 
which generate increasingly large numbers. This should have been expected in view of 
the fact that in this limit one is attempting to solve what is really two decoupled 
eigenvalue problems, which renders bispherical coordinates unsuitable for rep- 
resentation. 

As shown in table 1, numerically computed eigenvalues of interacting bubbles at 
D = 10 are very close to those predicted for individual bubbles by (3.1) for k = 0 and 
by (4.7) for k = 1,2,3,4,5. Clearly, lower eigenfrequencies need a smaller number of 
Legendre modes in order to be captured accurately. In fact, from some point on, as the 
order of the polynomials used in the approximation increases these frequencies do not 
converge any further. Higher modes converge slower and it is necessary to increase N 
in order to obtain accurate values. The eigenvectors behave similarly although they are 
more sensitive to the increase in the number of terms retained in the series. 

When the distance between the two bubbles is infinite, two frequencies result for each 
value of the wavenumber, k,  one for each bubble. Thus there exist two infinite sets of 
eigenfrequencies. Eigenvalues for R = 0.7 and at distances D = 5 and 2.5 are given in 
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Left bubble is deformed (R, = 1) 

N = 5  N = 8  N =  10 
5569.5938 5569.5938 5569.5939 

0.88 x 10-7 0.1 x 10-8 0.1 x 10-2 

12.000551 12.000001 11.999996 
40.078286 40.000005 39.999997 
92.999998 90.001 050 90.000001 

207.105 62 168.08294 168.00024 

Right bubble is deformed (R,  = R = 0.7) 

N = 5  N = 8  N =  10 
1 1  605.105 11  605.105 1 1  605.105 

0.98 x 10-6 0.1 x 10-8 0.1 x 10-7 
34.985 527 34.985 424 34.985 404 

116.64927 116.61808 116.61808 
264.91965 262.39077 262.39067 
547.04429 489.81331 489.79593 

TABLE 1 .  Numerical convergence of W E  obtained for P, = 666.66, y = 1.4 and D = 10 

Pelekasis (1991). They demonstrate that as D decreases, these two sets of frequencies 
evolve continuously from their starting values at B+ 03. In fact, the eigenvalues 
stemming from lower wavenumbers change faster with decreasing B. The one 
corresponding to the smaller bubble and k = 0 is seen to increase as D decreases, 
whereas the one corresponding to the larger bubble and k = 0 is seen to decrease. Thus, 
with the same parameters as in table 1, w i  of the left bubble reduces to 5489.42 and 
5180.90 at D = 5 and 2.5 respectively; whereas u," of the right bubble increases to 
12093.21 and 14469.92. The two eigenvalues stemming from k = 1 always remain zero, 
attesting to the translational symmetry of the system. Eigenvalues stemming from 
k > 1 seem to increase very slowly as D decreases. 

Furthermore, as D decreases, the eigenvectors become more complicated and more 
Legendre modes are needed for their representation. They may be expressed in a 
spherical coordinate system with origin the centre of mass of each bubble, and then 
decomposed in spherical harmonics. The Fourier-Legendre coefficients of each mode 
are given by 

' ik  = l & ( q )  ' k ( d  sin (7) dy, = 9 2- (4.8) 

Then, it may be seen that the dominant harmonic is the Legendre polynomial of the 
same order as the eigenvector corresponding to the eigenvalue obtained at infinite 
separation. For example, the eigenvalues 12 and 34.985423, corresponding to k = 2 for 
individual bubbles with R = 1 and 0.7 respectively, evolve to 12.0001 and 34.98566 
when D = 5, with eigenvectors that give rise to the shapes shown in figures 4(a) and 
4(b). In figure 4(a) the presence of the second Legendre mode, Pz, is evident in the 
shape of the left bubble whereas the other one remains almost spherical. The opposite 
is true in figure 4(b). Another important feature of the present problem is that the 
eigenvectors involve all the spherical harmonics, to a varying extent. Indeed, close 
examination of figure 4(b) reveals that the ratio between the two volumes is different 
from the one prescribed by the initial conditions, due to the presence of pD that induces 
volume oscillations. 

Table 2 gives the converged eigenfrequencies, along with the number of terms needed 
for convergence, for two bubbles of equal size, R = 1 and at distances D = 10, 5 and 
2.5 apart. Translational symmetry is still present, hence the two zero eigenvalues for all 
three values of D when k = 1.  In this special case, the two infinite sets of 
eigenfrequencies are identical when D + co . However, as D decreases from infinity two 
eigenfrequencies evolve from each wavenumber k = 0,2,3,4, . . . , co. They correspond 
to the two bubbles oscillating in and out of phase. More specifically the smaller of the 
two frequencies corresponds to in-phase bubble oscillations, whereas the larger one 
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FIGURE 4. Bubble shapes corresponding to selected eigenvectors of the linear problem at P, = 666.66: 
(a) eigenvector stemming from k = 2 at infinite distance with the left bubble deforming, R = 0.7 and 
D = 5.0; (b) as (a) but for the right bubble; (c) eigenvector stemming from k = 0 at infinite distance 
corresponding to in-phase oscillations, R = 1.0 and D = 4.0 and (d )  as (c) but corresponding to out- 
of-phase oscillations. 

corresponds to out-of-phase oscillations. Figures 4(c)  and 4 ( d )  show the shapes of the 
two bubbles given by the eigenvectors stemming from k = 0 for D = 4,  P, = 666.66 and 
y = 1.4 when the bubbles oscillate in and out of phase respectively. Moreover, the 
pattern that was observed for the eigenvalues stemming from k = 0 in the case of 
unequal radii is observed here for the eigenvalues evolving from all wavenumbers. That 
is, as D decreases, the eigenvalue corresponding to in-phase oscillations decreases, 
while the other one increases. Similar results have been obtained by Scott (1981), for 
the eigenvalues stemming only from k = 0 for a pair of equal bubbles in the absence 
of surface tension, and by Sangani (1991), for the linear frequencies of two equal 
bubbles in the presence of surface tension and in the limit D + 00. It was also found 
that, irrespective of the relative size and distance of the bubbles, decreasing the static 
pressure decreases the eigenvalues stemming from k = 0, whereas the rest do not 
change significantly. For example, when P, = 50, ui = 355.82 and 534.14 for in-phase 
and out-of-phase oscillations of two equal bubbles at D = 5, see Pelekasis (1991). 

For relatively small disturbances and during the early stages of the motion even 
forced oscillations of the two bubbles can be accurately captured by the linearized 
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0 -  

-0.1 

-0.2 

CO 

-0.3 

D =  10 D = 5  

In phase Out of phase In phase Out of phase 

'- 

-. 

- 

k 4 
0 5097.1435 
1 0.3 x 10-o 
2 1 1.998 802 
3 39.99986 
4 89.999 99 
5 167.999 

N 4 N 4 N 4 N 
5 6229.9718 5 4678.3411 10 7022.8218 10 
8 0.3~10-9 8 0.1 x lo-@ 12 0.3 x lo-* 12 
8 12.001 20 8 11.96211 12 12.03892 12 
8 40.000 1 8 39.9822 12 40.0180 12 

10 90.0000 10 89.994 12 90.006 12 
15 168.000 15 167.998 15 168.0016 15 

D = 2.5 

___ 
k 
0 
1 
2 
3 
4 
5 

In phase 

4 
4079.5078 

0.7 x 
10.881 
37.9 
87.31 

165.0 

Out of phase 

N 4 N 
15 9970.9041 15 
20 0 . 9 ~  20 
20 13.372 20 
20 42.6 20 
25 93.39 25 
25 171.0 25 

TABLE 2. Converged values of w i  numerically obtained for R = 1.0, P, = 666.66, and y = 1.4. N is the 
number of terms retained for the accuracy shown 

I I 1 I I 
0 0.5 1 .o 1.5 2.0 2.5 

-0.5 I 

Time 
FIGURE 5. Linear oscillations in time of the zeroth Legendre mode with R = 1, D = 2.5 and 
P, = 666.66, in response to a step change in the pressure at infinity. Decomposition is done in the 
original bispherical coordinate system. 
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problem. For example the linear oscillations of two bubbles of equal size, R = 1, 
located 2.5 radii apart are computed with the initial condition given by (2.1) and 
P, = 666.66. This excites in-phase oscillations of the two bubbles. Their period, 
T, = 0.098, corresponds to k = 0 in table 2, see figure 5. At the same time, owing to the 
presence of other modes the amplitude of co = j:flv)sinrdq is modulated over 
roughly the linear period of Pz, which is T,  = 1.905, see table 2. Although the centres 
of mass of each bubble are also oscillating around their initial location, no net 
attraction between the two bubbles was observed. This should have been expected since 
the long-term, relative motion of the centres of mass is a nonlinear effect. The 
dominance of linear volume oscillations during the early stages of the motion is evident 
in nonlinear calculations as well. 

5. Nonlinear oscillations of bubbles with equal radii 
5.1. Global characteristics of the motion 

The time-averaged force between two bubbles of equal radius, undergoing volume 
oscillations with frequency w ,  was known to decrease with the square of the distance 
between their centres of mass to such early investigators as Bjerknes and Hicks. A 
straightforward derivation of the average acceleration of the two bubbles, one that 
avoids the lengthy procedure of the method of images, is given by Batchelor (1967) and 
Crum (1974). They account for the secondary Bjerknes force on a bubble A, which 
undergoes only volume oscillations, as a kinematic buoyancy induced by the 
acceleration of the radiated velocity field from another bubble B, which oscillates with 
the same frequency. In analogy to gravitational forces, the force on A is given by the 
product of the acceleration of the fluid in the neighbourhood of A and the volume of 
fluid that is displaced by this bubble. In other words, the accelerating motion of the two 
bubbles is really a kinematic effect since no external force is acting on them- the 
pressure on each surface integrates to zero. Their acceleration will be towards each 
other when the phase difference in their oscillations, 9, is in the range 0 < p l <  in or 
gn < y < 2n, whereas the two bubbles will move away from each other when 
in < tp < in. Finally the acceleration of each bubble, averaged over a period of volume 
oscillations, is found to depend on the square of the disturbance amplitude E ,  the 
inverse square of their distance D,  and the square of the oscillation frequency. It should 
be understood that this is an asymptotic result which holds only in the limit of small 
initial disturbances, s+ 0, and very large distances, D-t  00. Even though linear 
quantities were used for obtaining the acceleration, it is an O ( 2 )  effect and cannot be 
captured by solving the linear problem, which is O(e). 

In order to capture this asymptotic behaviour a number of nonlinear numerical 
simulations were carried out and emphasis was placed on the behaviour of the system 
during the early stages of the motion. In all cases volume oscillations were induced by 
a pressure change at infinity. Figure 6 shows the variation with time of the volume of 
the left bubble for the case of two interacting bubbles of equal size, R = 1, with centres 
located four radii apart initially, D = 4. The static pressure P, is set to 666.66 and this 
value will be used throughout $ 5 .  The effect of the static pressure on the motion is 
examined separately in $6 .  Furthermore, the disturbance amplitude, e, is set to 0.2, i.e. 
the static pressure in the far field is increased at t = 0 to P, = P, + sP, = 799.992. The 
volume of each bubble is seen to oscillate in time with constant amplitude and period 
until at t rz 1.2 it starts increasing exponentially fast, which signals the onset of the 
Rayleigh-Taylor instability. The volume of the right bubble varies with time in exactly 
the same way owing to symmetry. From these very regular volume oscillations, or 
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Time 
FIGURE 6. Volume oscillations of the left bubble induced by a step change in the pressure at intinity; 
E = 0.2, R = 1, D = 4 and P, = 666.66. The right bubble behaves in the same way owing to symmetry. 
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FIGURE 7. Evolution of the centre of mass of the left bubble, Z,  < 0, the right bubble, 2, > 0, and 
the combined centre of mass, Z = 0, until computations break down, for R = 1, P, = 666.66, and 
-, D = 4, E = 0.2; ---, D = 4, e = 0.3; ..., D = 2.5, E = 0.2 and -*-, D = 2.5, E = 0.3. 

other ‘global’ characteristics of the motion, one cannot anticipate the very severe 
shape deformations that occur under the same conditions after t x 0.9 which are 
discussed in $5.2. 

Oscillations of the two bubbles are in phase and the period is found to be 0.082, 
which is lower than the value 0.094 predicted by linear theory for in-phase oscillations 
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FIGURE 8. Variation with time of (a) the velocity and (b) the acceleration of the left bubble for 
R = 1, D = 4, 6 = 0.2 and P, = 666.66. The right bubble behaves similarly owing to symmetry. 

at P, = 666.66. This is because the zeroth mode is essentially the only eigenmode that 
is affected by pressure changes. Moreover, an increase in the far-field pressure at 
t = 0 increases the frequency more significantly than inertia decreases it. The latter is a 
second-order effect (Tsamopoulos & Brown 1983). The same behaviour was reported 
in PTMl where the oscillations of a liquid shell are induced by a step change in the 
exterior pressure. For air bubbles with radius of the order of 1 mm, surrounded by 
water with density 1 g/cm3 and surface tension 75 g/s2, a dimensionless period of 0.082 
corresponds to a frequency of 3.3 kHz. 

During the early stages of the motion the zeroth eigenmode is predominant and the 
shapes follow closely the prediction of linear theory. As can be seen from figure 7 the 
two centres of mass oscillate symmetrically on a fast timescale and keep approaching 
each other in a slow timescale. The combined centre of mass remains at zero owing to 
symmetry also, thus confirming the numerical accuracy of the calculations once more. 
Their velocity and acceleration are also oscillatory and they are shown in figure 8 for 
the left bubble. The average velocity over a period of volume oscillations is initially 
increasing almost linearly with time, whereas towards the end of computations it 
increases at a lower rate. Values for the acceleration have only been obtained up to 
roughly t = 1.1, because numerical accuracy deteriorates beyond this and evaluation of 
the second time derivative of the location of centres of mass becomes inaccurate. Closer 
inspection of figure 8(b)  reveals that the left bubble spends more time accelerating 
towards the right one than decelerating away from it and, hence, its positive average 
acceleration over a period. The average acceleration is found to be much smaller than 
the instantaneous one and has a tendency to remain constant initially. Later it starts 
decreasing without ever changing its sign, so that the force always remains attractive 
until computations break down. Indeed, for the current simulation the values of the 
average acceleration of the left bubble over each of the first 10 periods of its volume 
oscillation are: (8) = 1.78, 1.87, 2.05, 1.92, 2.05, 1.75, 1.43, 1.25, 1.03 and 0.68. 

The simulation is subsequently repeated with different values of the disturbance 
amplitude B, and for different initial distances D between the two centres of mass. 
Numerical values for the average acceleration are given in Pelekasis (1991). They are 
obtained by averaging over the first period only, because they are seen not to change 
drastically with time and, in any case, they are the most appropriate ones since the two 
bubbles deform and approach each other as time increases while asymptotic results 
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FIGURE 9. Variation of the average acceleration of the left bubble when R = 1 and P, = 666.66, with 
(a) the amplitude of the initial disturbance for D = 4, ( g )  = 13.252 (-), and for D = 2.5, 
(g) = 452 (----); and with (6) the initial distance between the two centres of mass for E = 0.2, 
(g) = 35.84/D2. The right bubble behaves in the same way owing to symmetry. 

hold in the limit as D -+ 00. A graphic representation of the data is given in figure 9 (a) 
along with quadratic curves that fit the points. The curves are produced by assuming 
an As2-type behaviour and calculating the coefficient A using one of the points (E ,  (g ) )  
found numerically. The cases with D = 8, 16 and E = 0.2 are also computed in order 
to examine the dependence of the acceleration on D. The O(1/D2) behaviour is 
followed only when D 3 4 as shown in figure 9(b).  

It may be concluded that inertia induces an average motion of the two bubbles 
towards each other and a constantly increasing velocity. This is a Bernoulli effect and 
can be explained with essentially the same argument that Kelvin used (Lamb 1932, art. 
138) for the attractive force on a stationary body by another one which is oscillating 
along the line connecting their centres. More specifically, the step change in pressure 
forces the fluid velocity to be higher in the region between the two bubbles than in the 
area surrounding them. This is due to the smaller gap between them as compared to 
the infinite region extending away from the two bubbles. As a result, fluid moves away 
from the gap and towards the infinite region. Consequently, the two free surfaces are 
forced to move in such a way as to fill the gap created by the departing fluid, thus 
bringing the two bubbles closer together. Simultaneously the pressure inside the gap 
decreases and during the second half of the period higher exterior pressure induces flow 
towards the gap, until the end of the period when the motion is reversed again. 
However, for in-phase oscillations and on average, fluid will slowly flow away from the 
gap and towards infinity. In contrast, when the two bubbles are oscillating out of phase 
the average fluid motion is directed towards the gap, as will be shown in the second part 
of this study. 

This is opposite to what was observed by PTMl in the case of an oscillating shell. 
There, the average velocity eventually changes sign, indicating an oscillatory secondary 
motion rather than a constantly accelerating one. This difference is attributed to the 
fact that in the case of a shell there is a symmetric configuration, that of a concentric 
shell, and the average motion of the two centres of mass is determined by their 
departure from this configuration. The larger the departure the smaller the average 
velocity until a maximum in departure is reached where the average velocity changes 
sign. In the present case the only configuration that would eliminate all asymmetries 
is that of the two bubbles coinciding at the intersection of the two axes of symmetry. 
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FIGURE 10. Shapes of the right bubble exhibiting globally deformed shapes, up to break down of 
computations with R = 1, D = 8, E = 0.2 and P, = 666.66, at (a) t = 1.04, (b) t = 1.26, (c) t = 1.32 
and (d )  t = 1.40. These parameter values result in an initial average acceleration of <g) = 0.53. 

This is in fact the configuration that the system is approaching when the two bubbles 
are accelerating towards each other and it is realized when the two bubbles coalesce to 
form a new one. Clearly the problem formulation is such that it cannot handle 
coalescence. 

5.2. Bubble shapes and breakup mechanisms 
As integration in time proceeds and the average velocity of the two centres of mass 
increases, the evolution of the two interfaces follows two distinct patterns depending 
on the relative importance of inertia and surface tension, for any given value of P,. 
Therefore, this evolution is determined by the Bond number, Bo. For a pair of equal 
bubbles this number is identical to the dimensionless average acceleration, ( g ) ,  owing 
to the scale used for time. Bo does not remain constant throughout the motion since 
( g )  varies over different periods of the volume oscillations. However, as was seen in 
the previous section, it does not change significantly and its value during the first period 
can be used to characterize the motion for all practical purposes. 

The effect of acceleration can be made more or less pronounced by changing the 
initial distance D between the two bubbles, the disturbance E or even the static pressure. 
In fact, by carrying out a number of numerical simulations it was found that there must 
be a critical Bo beyond which spherical-cap shapes may occur. However, the small 
variation of ( g )  does not allow for a well-defined value of critical Bo. Rather, a critical 
range of values for Bo is identified. More specifically it was found that, when Bo > 1.5, 
spherical-cap shapes appear; whereas when Bo < 1 the entire interface deforms. We 
now present the mechanism that gives rise to both classes of shape. 

When E = 0.2 and D = 8 the average acceleration is ( g )  = 0.53, which is below the 
critical range. Figure 10 shows the last stage in the evolution of the shape of the right 
bubble. Clearly, deformation is spread everywhere on both surfaces. The two 
interfaces evolve in time following a pattern reminiscent of the globally deformed 
shapes reported by Kornfeld & Suvorov (1944) in their cavitation experiments. 

In order to explain the generation of such shapes one needs to examine the evolution 
of certain coefficients of the Legendre decomposition of the shape of one of the bubbles. 
Selected coefficients are shown in figure 11. As expected, Pz and P3 start growing first 
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FIGURE 1 1. Variation with time of selected Legendre coefficients, (a) co, (b) -, ce; . . ., elO, of the 
shape of the left bubble for R = 1, D = 8, E = 0.2 and P, = 666.66. The decomposition is done in a 
spherical coordinate system located on the instantaneous centre of mass of the bubble. The right 
bubble behaves in the same way owing to symmetry. 

through nonlinear interactions. All higher modes remain negligible except for P, and 
Plo, which start growing at a later stage but eventually dominate the shape. This can 
also be seen by noticing the ten lumps developing in the shapes of the two bubbles at 
t w 1.4, in figure 10. This is a very interesting effect and can be properly understood in 
the context of parametric excitation of non-spherical harmonics when the basic radial 
motion becomes unstable (Hall & Seminara 1980). More specifically, a closer 
examination of the graphs showing the variation with time of P,, Pg and P,, reveals that 
towards the last stages of the motion, but before computations fail, the latter two 
modes oscillate with a period which is approximately twice the nonlinear period of Po, 
T, = 0.078. Furthermore, linear analysis gives the frequencies of the above modes as 
wo = 70.6, wg = 28.3 and wl0 = 34.5. Hall & Seminara (1980) showed that when the 
frequency of the radial motion of a single bubble happens to be twice the linear 
frequency of a Legendre mode and sufficiently large perturbations are applied, 
subharmonic excitation of the latter mode occurs which eventually dominates the 
shape of the bubble. This is exactly what is observed here. They also showed that this 
effect arises on a timescale O(s-l). More emphasis will be placed on the importance of 
resonance in the dynamic behaviour of the two bubbles in the second part of this study. 
Eventually computations fail owing to extensive growth of the subharmonically excited 
modes. Regions of very large curvature are formed at a finite time which are expected 
to lead to bubble breakup and formation of smaller bubbles under the action of 
viscosity and surface tension. 

Increasing E to 0.4 while leaving the other parameters unchanged increases the Bond 
number as well, to Bo = 2.1. The shapes that arise now are characterized by severe 
deformation on the side facing away from the direction of acceleration. Hereby, this 
side will be called the rear side. The other side, correspondingly called the front side, 
remains almost spherical, figure 12. This configuration is referred to as the spherical- 
cap shape. Such shapes were originally observed by Davies & Taylor (1950) in their 
experiments with gas bubbles rising steadily through liquids under the action of 
gravity. In the second part of this study it will be shown that besides the shape 
resemblance between the present results and those by Davies & Taylor, in both cases 
the appearance of such shapes is associated with the balance between inertia and 
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FIGURE 12. Bubble exhibiting spherical-cap shapes, obtained up to break down of computations with 
R =  1,D=8,~=0.4andP,=666.66,at(u)t=0.61,(b)t =0.65,(c)t=0.67and(d)t =0.69.These 
parameter values result in initial average acceleration of (g) = 2.1, 
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FIGURE 13. Deformed bubble shapes, obtained up to break down of computations with R = 1, 
D = 4, B = 0.2 and P, = 666.66, at (a) t = 0.96, (b) t = 1.02, (c) t = 1.10 and ( d )  t = 1.16. These 
parameter values result in initial average acceleration of ( g )  = 1.8. 

surface tension forces and occurs within the same parameter range. It is possible 
therefore, that the shape evolution observed here may also occur in rising bubbles 
before they reach their terminal velocity. The Legendre decomposition of the shapes in 
figure 12 is dominated by the low modes P,, P3, P4, up until computations fail. This 
behaviour becomes apparent at time t = 0.7 which is exactly half the time needed for 
significant shape deformation to arise when e = 0.2. Repeating the calculation with 
6 = 0.5 yields shapes deformed on the rear sides only and at time 0.6, approximately. 

When the bubbles are initially closer together their interaction will be stronger. 
Figures 13 and 14 show selected shapes for the cases when R = 1, P, = 666.66, D = 4 
and E = 0.2 or 0.3, respectively. In the latter case especially, the shapes obtained 
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FIGURE 14. Bubbles exhibiting spherical-cap shapes, obtained up to break down of computations with 
R = I ,  D = 4, E = 0.3 and4  = 666.66,at(u) t = 0.52, (b) I = 0.56, (c) t = 0.60and(d) t = 0.62. These 
parameter values result in initial average acceleration of (g) = 4.1. 

D = 8.0 D = 4.0 D = 2.5 

6 Time E Time E Time 
0.2 1.4 0.17 1.2 0.2 0.6 
0.4 0.7 0.2 1.0 0.3 0.4 
0.5 0.6 0.3 0.6 0.4 0.3 
- - 0.4 0.4 - - 

TABLE 3. Variation with E of the approximate time needed for spherical-cap shapes to appear, for 
different initial separations, D = 8.0, 4.0 and 2.5; in all cases R = 1 and P, = 666.66 

conform strongly to the pattern described above with a well-defined spherical face at 
the front. In the former case, where the average acceleration is smaller, the shapes are 
more oblate-like, i.e. prolonged along the plane normal to the z-axis. Repeating the 
computation for D = 2.5 and E = 0.3 results in the shapes shown earlier in figure 3. The 
rear side is again significantly deformed whereas the front side is flattened around the 
pole and it is almost perpendicular to the z-axis. This is expected since the (x, y)-plane 
is a plane of symmetry and hence pathlines lie on it. At the same time, the two bubbles 
are very close to each other and the motion of fluid particles attached to their front 
faces will be very similar to the motion on the (x, y)-plane. For all three cases discussed 
in this paragraph the Bond number is beyond the critical range, see also figure 9(a). 

In an effort to give a more quantitative description of the motion, the approximate 
times at which spherical-cap shapes appear are tabulated for different amplitude of the 
initial disturbance, E, and different values of the initial distance between the centres of 
mass, D. As can be seen from table 3 this time is roughly inversely proportional to the 
amplitude 6. The validity of this timescaling ( t  - 6-l) is reinforced by noticing an 
interesting similarity between this problem and that of an oscillating shell examined in 
PTMl and in Tsamopoulos & Brown (1987). Figure 7 shows the evolution of the two 
centres of mass for four different pairs of initial disturbance amplitudes and distances 
between the two centres. Comparing these with the figures showing the evolution of the 
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FIGURE 15. Variation with time of selected Legendre coefficients of the shape of the left bubble: (a) 
co, (b) -, ce; , . ., c?; ---, cl0 for R = 1, D = 4, E = 0.3 and P, = 666.66. The decomposition is done 
in a spherical coordinate system located on the instantaneous centre of mass of the bubble. 

centres of mass of the drop and the bubble in PTMl one can see that the former 
resemble the early stages of the oscillatory motion shown in the latter. As explained 
before, the slow oscillatory motion is absent here since fluid extends to infinity. On the 
other hand, in the case of a shell, besides the fast oscillation with frequency wf = 0(1), 
the two centres of mass also participate in an oscillatory slow motion with frequency 
w, = O(E). When of 4 w8, the amplitude of the oscillations, averaged over one period 
of the fast motion, can be roughly described as Bcos w, t ,  where B is the amplitude at 
t = 0. Proceeding rather heuristically and expanding around t = 0 yields that the 
amplitude varies as ~ B O ;  t2.  Differentiating twice with respect to time shows that the 
average acceleration is BW,~  = 0(e2) .  This is constant in time, as is the average 
acceleration in the present study for most of the motion and for small E .  Therefore, the 
scaling of the acceleration with the square of the disturbance E suggests by analogy that 
an O(E-') timescale must exist here as well. 

In order to compare the mechanism that generates spherical-cap shapes instead of 
globally deformed shapes we examine the evolution of certain LegendreFourier 
coefficients with time. This is shown in figure 15 when E = 0.3 and D = 4. Additional 
modes are given in Pelekasis (1991). Comparing the first 40 modes, it is observed that 
higher and higher modes start growing as time increases, but the lower ones remain 
dominant. That is q > q+', in general and before computations fail. Eventually, all 
modes grow exponentially almost simultaneously, just after they start oscillating with 
the frequency of the zeroth mode. These observations are in sharp contrast to those 
related to figure 11. As was mentioned in the discussion of numerical stability this 
growth is not a numerical artifact. It is a result of a Rayleigh-Taylor instability that 
occurs when the forces of inertia along the direction of motion dominate surface 
tension forces, hence the critical range of Bond numbers. 

Similar shapes were obtained by Harper et al. (1972) in their analysis of the motion 
of a single drop accelerated by the flow of an external gas. The primary timescale in 
their problem is related to inertia forces and is defined as tf = ro/um = 0(1), where Y, 

is the radius of the drop at t = 0 and u, is the velocity of the exterior gas flow. On this 
timescale the drop is found to undergo shape oscillations forced by the external gas 
flow. At the same time, the drop acquires an acceleration g which is 0 ( S ) ,  where 8 is 
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a measure of the initial disturbance, defined by Harper et al. as the ratio pg/pz 
of the densities oflthe gas and the drop. This acceleration defines a new timescale 
t ,  = ( r , /g ) t  = O ( P ) ,  which whez compared with the fast timescale gives the 
dimensionless Bond number, Bo = rog/u2, = O(8). A measure of the relative 
importance of inertia and surface tension forces, is given in the same study by the 
Weber number, f i  = pIr,u2,/u. An alternative definition of the Bond number as 
Bo = r:gp,/c is used in the present study. Had the latter been used by the above 
investigators, it would only change their results up to a multiplicative constant, 
provided that @e = O(1). On the slow timescale the effect of acceleration becomes 
equally important to or even overcomes surface tension and as B> increases it is Zen  
to give rise to unstable modes. In particular, when a critical lower value of Bo is 
exceeded an eigenmode with major comlxonent the second Legendre polynomial, Pz, 
becomes unstable. Further increase of Bo excites higher eigenmodes with Legendre 
polynomials of gradually increasing order as their dominant components. The shape 
of all the eigenmodes is such that the front face of the drop is almost spherical whereas 
the rear one is deformed. When % is below the critical value, uniformly deformed 
shapes oscillating in time are obtained. For more details see Harper et aE. (1972). The 
pattern in the present study is the same apart from the difference that the average 
acceleration (g) is an O(2) effect. Hence, the timescale on which it becomes important 
is O ( E ~ ) .  

The above instability as well as the one encountered here are generalized 
Rayleigh-Taylor instabilities (Chandrasekhar 198 1). That is, by splitting the domain 
in two and examining each bubble individually, it is found that the fluid surrounding 
the left bubble has to accelerate as a whole to the left, in view of the motion of the 
bubble to the right, in order to conserve mass. Then, the instability will appear on the 
side of the bubble where fluid acceleration is directed from the lighter fluid towards the 
heavier one. Here, this will happen on the rear side of each bubble. 

Another important aspect of this study is the fashion in which computations fail 
after the onset of the Rayleigh-Taylor instability. Figures 13(d), 14(d) and 3(d) 
showing spherical-cap shapes during the last stages of computation indicate the 
formation of troughs and valleys that seem to grow and oscillate in their own right. We 
have not been able to follow their evolution much further owing to the exponential 
growth of the eigenmodes. This leads to a curvature singularity at a finite time and 
before a clear neck is formed; see the rear side of the bubbles at x = 0 in figure 13(d). 
Even though the accuracy of computations decreases when this behaviour appears, the 
time at which it occurs is found to be the same irrespective of the time step or space 
discretization used. 

This raises the issue of finite-time singularities in potential flow simulations. Baker, 
Meiron & Orszag (1984) examined the dynamics of an imploding axisymmetric shell in 
the absence of surface tension. They also observed a singularity in the curvature at a 
finite time, but before any smooth deformation of the free surface takes place. Pullin 
(1982) conducted a two-dimensional study on the Rayleigh-Taylor instability of an 
interface between two immiscible fluids in the presence of gravity and surface tension. 
He found that even though surface tension stabilized higher modes in the linear limit, 
nonlinear simulations showed small-scale irregularities before smooth surface 
deformation occurred. Surface tension simply delayed the appearance of irregularities. 
In both studies mentioned above, the investigators were concerned with the general 
reliability of their results. In the present study curvature singularity appears in a finite 
time and after smooth deformation of the two free surfaces is observed. In addition, 
mesh and time-step refinement ensure the accuracy of results and relevant experimental 
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and theoretical studies support our findings. It is anticipated, however, that viscosity 
will decelerate breakup and allow for a clearer neck formation in regions where 
deformation is very large, followed by pinch-off in the presence of surface tension. 

Now, having obtained the proper scales for the average bubble acceleration 
((8) N e2) and the time needed for the development of instabilities (t  - cl), we can 
provide a new insight to the experimental observations by Kornfeld & Suvorov. As can 
be seen from figure 3, when the bubbles are very close initially, coalescence will occur 
quite fast and it is very unlikely that there will be ehough time for any instability to 
develop towards breakup. However, as the distance between the two bubbles increases 
and as it becomes larger than the bubble radius the time needed for coalescence is given 
roughly as t = (2D/(g) ) i ,  where ( g )  is the average acceleration, taken to be constant 
with time. Therefore, the quantity ( g )  t2 must become at least O(l), which will happen 
when time becomes O(e-l) since ( g )  is an O(e2) quantity. In other words, coalescence 
and bubble breakup both occur on the same timescale, which can serve as an 
explanation for the reduction in size during coalescence observed in the experiments of 
Kornfeld & Suvorov (1944). 

6. Effect of the static pressure, P, 
Increasing the base pressure, P,, primarily decreases the period of the fast volume 

oscillations as predicted by linear analysis. When D is sufficiently large, (3.1) gives a 
very good prediction of the linear period of the volume oscillations which is seen to be 
decreasing like e. As explained before, the initial step change in pressure that induces 
motion slightly decreases this value. At the same time, owing to the increase in 
frequency, the average acceleration of the two bubbles should increase proportionally 
to the pressure P,. Thus a decrease in both timescales describing the motion should be 
expected. In order to verify this prediction shapes of the two interfaces for increasing 
values of the static pressure are calculated, while keeping the other parameters 
constant. More specifically values of P, ranging between 190.5 and 5000 are used 
whereas 6, R and D were set to 0.3,l and 4 respectively. Setting the bubble size to 1 mm 
and considering gas bubbles in water, the above range of values for the static pressure 
covers a wide spectrum of conditions, ranging from 0.3 bar to several atmospheres. 
The time step was chosen so as to allow for approximately 150 time steps per period 
of the volume oscillations and 41 points were used for each free surface. Such a wide 
range of initial conditions and perturbations on them have been used in experiments 
by Kornfeld & Suvorov (1944) and Crum & Nordling (1972) and are quite common 
under cavitation conditions (Hammitt 1980). 

Table 4 shows the change in the period and the average acceleration as P, increases. 
Agreement with the above predictions is gratifying. When P, = 190.5 computations 
have to stop after roughly 8 periods due to loss of accuracy. The Legendre 
decomposition of the shape of the left bubble shows significant growth of high modes 
which makes continuation of the computation impossible (Pelekasis 1991). The shapes 
obtained do not exhibit any significant deformation even just before collapse, see 
Pelekasis (1991). The front side is nearly spherical whereas the rear one is more oblate- 
like and rather flat. For larger values of the static pressure, P, > 666.66, spherical-cap 
shapes appear and the calculations break down due to the Rayleigh-Taylor instability. 
Figure 16 shows the evolution of the shape of the two bubbles when P,  = 3000. It is 
also important that for all cases studied here this behaviour appeared after 
approximately 8 periods of the volume oscillations. In other words changing the static 
pressure preserves the major qualitative features of the motion albeit in a different time 
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P, (g) T, 
190.5 1.2 0.145 
666.66 4.1 0.078 

2000.0 12.5 0.045 
3000.0 18.7 0.03675 
5000.0 31.8 0.028 5 

TABLE 4. Variation of the average acceleration, (g), and the period of volume oscillations, T,, with 
increasing static pressure, P,;  in all cases R = 1, D = 4 and E = 0.3 
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z 

FIGURE 16. Bubbles exhibiting spherical-cap shapes, obtained up to break down of computations with 
R = 1, D = 4, E = 0.3 and P, = 3000, at (a) t = 0.19, (b) t = 0.25, (c) t = 0.27 and (d) t = 0.28. These 
parameter values result in initial average acceleration of (g) = 18.7. 
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FIGURE 17. Shapes of bubbles exhibiting globally deformed shapes, up to break down of 
computations with R = 1, D = 8,6 = 0.26 and P, = 1500, at (a) t = 0.51, (b) t = 0.53, (c) t = 0.54 and 
(d) t = 0.57. These parameter values result in initial average acceleration of (g) = 2.0. 



Bjerknes forces between two bubbles. Part I 497 

1.5 

x o  

I I I I -1.5 
0 1 2 3 4 5 

Z 

FIGURE 18. Bubble exhibiting spherical-cap shapes, obtained up to break down of computations with 
R = 1, D = 8, E = 0.6 and P, = 1500, at (a) t = 0.23, (b) t = 0.25, ( c )  t = 0.27 and ( d )  t = 0.28. These 
parameter values result in initial average acceleration of (8) = 10.3. 

frame. It should also be noted that as P, increases, deformation of the rear side of the 
bubbles becomes more and more pronounced. 

Another important effect of the change in pressure is the shift in the critical Bond 
number. When P, = 666.66 and for Bond numbers larger than 1.5 spherical-cap shapes 
occur. Increasing the static pressure to 1500 with e = 0.26, R = 1 and D = 8 gives rise 
to severe deformations spanning the entire surface of the two bubbles, figure 17. The 
Bond number in this case is 2.0. Increasing e to 0.6 and repeating the calculation shows 
that deformation is now confined to the rear sides of the two bubbles whereas the front 
sides are slightly flattened, figure 18. The Bond number is roughly 10.3. The times for 
which the shape deformation becomes apparent for the two values of the disturbance 
e used are t = 0.6 when E = 0.26 and t = 0.3 when E = 0.6 and conform to the O(S') 
pattern identified in the previous paragraphs. 

Using the results given in table 4 and interpolating, one can deduce that when 
E = 0.3, D = 4 and P, = 1500 the average acceleration (8) = Bo = 9.4 and spherical- 
cap shapes will eventually arise. This is in agreement with the range of Bo found above. 
Hence when P, = 1500 the critical bond number range above which spherical-cap 
shapes appear is between 2 and 9. This indicates a shift in the critical Bond number 
towards larger values with increasing static pressure. This may be explained by noticing 
that the static pressure does not have any preferred direction in space and when it 
becomes the dominant force it tends to break the bubbles symmetrically. Consequently 
in order to counteract the effect of larger pressure, larger values of the acceleration are 
required for spherical-cap shapes to appear. 

7. Concluding remarks 
In this study the motion of two gas bubbles immersed in an infinite liquid is 

examined. Motion is induced by a step change in the far-field pressure. The Eulerian 
formulation is used to solve the linear problem or capture the initial stages of motion, 
whereas the mixed Eulerian-Lagrangian formulation is used towards the late stages 
when severe shape deformation occurs. A hybrid method is used for the numerical 
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solution of the problem. It combines the boundary integral method for Laplace's 
equation with a weighted residual method (collocation or h i t e  element) for the 
kinematic and dynamic boundary conditions. 

The step change in ambient pressure induces in-phase volume oscillations of the two 
bubbles that subsequently cause them to accelerate towards each other. Their average 
acceleration is approximately proportional to the square of the amplitude of the 
pressure disturbance E ,  the square of the frequency of volume oscillations and the 
inverse square of their initial separation. 

Owing to the scalings used for making the problem dimensionless, the average 
acceleration is identical to a Bond number that compares the added inertia due to 
acceleration to surface tension forces. It is found that when the time becomes O(e-') 
these two effects stop balancing each other. This gives rise to significant shape 
deformations whose nature depends strongly on the magnitude of the acceleration, Bo. 
When Bo lies below a critical range of values, deformation is spread everywhere on the 
two free surfaces and it eventually leads to the formation of smaller bubbles. This is a 
result of subharmonic resonance between the volume oscillations of the two bubbles 
and certain non-spherical Legendre modes (Hall & Seminara 1980). When the Bond 
number lies above this critical range, deformation is confined to the side of the two 
bubbles facing away from the direction of acceleration. This gives rise to the so-called 
spherical-cap shapes that have been observed experimentally for gas bubbles rising 
under the action of gravity (Davies & Taylor). In the latter case, i.e. Bo above the 
critical range of values, the formation of spherical-cap shapes is followed by breakup 
via a Rayleigh-Taylor instability. This is also confined to the rear side of the bubbles 
and is identified by exponential growth of the Legendre coefficients of the shape and 
the development of a curvature singularity at some finite value of time. 

Increasing the static pressure causes the critical value of the Bond number to shift 
to higher values. For example when P, = 666.66 the critical range is found to be 
1 < Bo < 1.5 whereas when P, = 1500 the range shifts to 2 < Bo < 9. 

Finally, results obtained in the present study are valid until the two bubbles get too 
close to each other for viscous forces to be ignored. This will happen when time 
becomes O(Re4). Therefore, for high Re enough time is provided for the phenomena 
discussed here to evolve. However, in order for the dynamics of coalescence to be 
studied viscous forces have to be included in the model. This would also allow for a 
more realistic examination of bubble breakup, since viscosity is expected to modify the 
effects of the Rayleigh-Taylor instability. 
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